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with  the  expected value;  however b0 is significantly 
less t h a n  the  normal  d iameter  of I - .  

During the  pre l iminary  search for suitable crystals,  
it  was observed more f requent ly  t h a n  not  t h a t  spec- 
imens displayed ex t ra  spots along the  festoons of 
constant  h and  /c, a l though the  i r regular i ty  was not  
observed on the 001 line. Such behavior  suggests 
some kind of modified layer  s tacking a r rangement  
with a longer than  normal  co; a t  no t ime was a tendency 
toward  a change in a0 or b0 observed. I t  was, in fact,  
only af ter  a considerable search t h a t  a crystal  which 
gave a simple orderly pa t t e rn  was found. We have  
found numerous crystals  with the  'perfected'  s t ructure  
elucidated in this manuscr ip t ,  however,  and believe 
it to be the  correct one to ascribe to CrI2. Specimens 
which showed irregular  spots gave poor qual i ty  photo- 
graphs  and  the  irregularit ies were not  reproducible 
in the  various imperfect  crystals  examined;  hence no 
a t t e m p t  was made  to determine the  s t ructure  of 
anyone of them.  In  ext reme cases, the  festoons 
appeared  as a near ly  continuous line. These irreg- 
ularities m a y  be a consequence of the  non-equil ibrium 
conditions under  which crystals  were grown. 

This work was performed with the  aid of financial 
suppor t  received from the Office of Ordnance Re- 
search, U.S. Army.  
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Latt ice  V i b r a t i o n s  of Molecu lar  Chains  
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The lattice vibrations of linear chains consisting of one and of two different types of ring-shaped 
molecules are derived assuming central and non-central harmonic restoring forces between next  
neighbours. Restricting the problem to two degrees of freedom at  a time it is shown tha t  the general 
normal modes of the chain consist of mixed vibrations containing both translational and rotational 
components. The contribution of the translational and rotational components changes continuously 
along each branch of the dispersion curve; their phase relationships however remain constant 
through the entire fundamental range. Dispersion curves and amplitude ratios are calculated for 
different sets of parameters. The extension of the results to centrosymmetrical molecules of other 
shapes is discussed. 

I n t r o d u c t i o n  

Since Born  & K£rmSn ' s  pioneer paper  (1912) on the 
lattice vibrat ions of monatomic  chains the  vibra- 
t ional modes of a tomic lattices have  been the subject  
of m a n y  theoret ical  invest igations (Brillouin, 1946; 
Blackman,  1955; de Launay ,  1956). The s tudy  of the  
latt ice vibrat ions of molecular s t ructures  has been 

* Present address: Department of Physics, Queen Mary 
College, London. 

given much less a t tent ion,  most  of the  investigations 
having been concerned with the  internal  vibrat ions of 
the molecules. These internal  vibrat ions lie in the  
visible and  ul t raviolet  range (1/2~--300-3000 cm. -1) 
while the  lat t ice vibrat ions lie in the  far  infrared 
(1/A~--50-150 cm.-1). Apa r t  f rom the far  infrared 
emission and  absorpt ion spectra,  lat t ice v ibra t ions  
are observable also in the  low-frequency R a m a n  
spectra and they  are mainly  responsible for the  diffuse 
scat ter ing of X- rays  and the inelastic scat ter ing of 
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thermal  neutrons by molecular crystals (S£ndor & 
Wooster, 1961). 

Among the few theoretical  studies on the lattice 
v ibra t ions  of molecular crystals there were two 
a t tempts  to derive the normal  modes of simple molec- 
ular chains. Raskin,  Sechkarev & Skripov (1949) 
studied the latt ice vibrat ions of molecular chains 
having two diatomic molecules in the uni t  cell related 
to each other by  (i) mirror plane, (ii) screw axis, 
(iii) centre of symmetry .  In  all three cases the molec- 
ular interact ion was a t t r ibuted  to quasielastic inter- 
atomic forces and  only first-neighbour interact ion was 
considered. Since the aim of this invest igat ion was 
to provide a theoretical basis for the Raman-spect ra  
studies of the authors,  only the fundamenta l  fre- 
quencies of the chain (corresponding to infinite wave- 
length) were calculated and  these could be directly 
related to the observable g a m a n  frequencies. The 
normal modes associated with these fundamenta l  
frequencies were found to be generally of mixed 
character, containing both t ransla t ional  and  rotat ional  
components. A pract ical ly  impor tan t  exception was 
the chain of centrosymmetr ic  molecules, the funda- 
menta l  vibrat ions of which were either pure rotat ional  
or pure translat ional .  Skripov (1949) has shown tha t  
this la t ter  result  could be easily extended to three- 
dimensional  molecular structures. Apar t  from cal- 
culating the fundamen ta l  frequencies the authors 
made no a t t empt  to derive either the shape of the 
dispersion curvcs or the relat ionship between the 
t ranslat ional  and rotat ional  components.  

Another  approach to the problem of lattice vibra- 
tions of molecular crystals is due to Asano & Tomi- 
shima (1957). These authors studied the vibrat ional  
modes of complex inorganic crystals, and in a short 
appendix extended their  results to chains of spherical 
molecules. Two cases were considered: (i) chains 
consisting of identical  spheres and (ii) chains con- 
sisting of two types of sphere al ternately.  The mole- 
cules were allowed two degrees of freedom: one for 
t ransverse l inear and one for angular  vibrations.  
Secular equations were derived for both  types of 
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Fig. 1. Dispersion curves of a linear chain of identical spheres 
derived from the secular equation of Asano & Tomishima. 

chains and typical  dispersion curves plotted for both 
cases. 

The results of this analysis  have several short- 
comings. The two dispersion curves of a chain of 
identical  spheres are given by two intersecting curves, 
one resembling a sine, the other a cosine curve. The 
'sine' curve is labelled transverse acoustic, the 'cosine' 
curve rotat ional  acoustic. This result  is at  var iance 
with the secular equat ion of the authors which yields 
two non-intersecting dispersion curves of the type  
shown in Fig. 1. Fur thermore  it can be shown that ,  
apar t  from the te rminal  points, every other point  of 
the dispersion curves is associated with mixed vibra- 
tions having both t ransla t ional  and rotat ional  com- 
ponents. But  even these corrected dispersion curves 
are unacceptable,  because they  a t t r ibute  zero rota- 
t ional frequency to the boundaries of the fundamenta l  
range (k= _+ 1 /2=  + ~/a) which implies the untenable  
assumption tha t  the configuration corresponding to 
opposite angular  displacement  of neighbouring mole- 
cules (see Fig. 5) is an equi l ibr ium configuration. 
Thus one has to conclude tha t  even the secular 
equation given by the authors is at  fault.  

A. La t t i ce  v i b r a t i o n s  of a m o n o m o l e c u l a r  chain 

The secular equation for transverse vibrations 
In  what  follows the latt ice vibrat ions of molecular 

chains will be derived using a sui tably modified version 
of the Born -K£rm£n  method. Firs t  the monomolecular  
chain, i.e. a chain consisting of identical  molecules, 
will be considered. The following simplifying assump- 
tions are made. 

(i) The chain is infinite, is l inear and consists of 
close-packed plane molecules having masses M, 
moments  of inert ia  I and spacings a. The molecules 
are plane rings containing six close-packed spherical 
atoms, thus resembling the carbon skeleton of a 
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Fig. 2. Equilibrium position of three neighbours in 
a linear chain of identical ring-shaped molecules. 

benzene molecule (see Fig. 2). The distance R of each 
atomic centre from the centre of the parent  molecule 
is equal  to the diameter  of the atom and also to the 
distance between the  nearest  atomic centres of neigh- 
bouring molecules in equi l ibr ium position. In  equi- 
l ibr ium all molecules lie in the same plane and the 
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short lines drawn across the centres of the molecules 
in Figs. 2 to 6 all point in the chain direction. 

(ii) The interaction between neighbouring molecules 
is represented by two harmonic restoring forces: 
a central force F c with force constant cl, acting 
between the centres of neighbouring molecules, and 
a non-central force F nc with force constant c2 acting 
between the centres of the nearest atoms of neighbour- 
ing molecules (see Fig. 3). The central force F c depends 
only on the linear displacements of neighbouring 
molecules, while the non-central force F nc depends 
also on their angular displacements relative to the 
equilibrium position. 

p Q 
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Fig. 3. Instantaneous posit ions of three neighbours in a 
vibra t ing  linear chain of identical  r ing-shaped molecules. 
The ins tan taneous  pos i t ions  of the  molecular  and  atomic 
eentres are indicated wi th  dashed letters.  

(iii) Each molecule in the chain has six degrees of 
freedom, three for translational and three for rota- 
tional vibrations. At first we consider only two degrees 
of freedom: a transverse translational vibration in the 
equilibrium plane of the molecules and a rotational 
vibration around an axis perpendicular to this plane. 
Only vibrations of small amplitude will be admitted. 

In  deriving the equation of motion for the transverse 
translational vibration of the j t h  molecule only the 
transverse component of the total  force acting on it 
need to be considered. Denoting the instantaneous 
transverse and angular displacements of the j t h  
molecule by u¢ and (Sj respectively we get the in- 
stantaneous transverse component of the central force 
acting on t h e j t h  molecule due to the (j + 1)th molecule. 

F~,S+l=Cl(Us+~- us) . (1) 

On the other hand the instantaneous transverse 
component of the non-central force acting on the j t h  
molecule due to the (j + 1)th molecule is given by 

Fs~,~+l = c.,(us+ 1 - us) - c2R (c3s+1 + 6 s) • (2) 

Equation (2) is  an approximation for the case when 
the angular displacement 5~ is so small tha t  the trans- 
verse displacement of an atom having its centre in 
the chain axis in equilibrium can be taken equal to 
R~j. Similarly the instantaneous transverse com- 
ponents of F~ and F ~ due to the ( j - 1 ) t h  molecule 
are respectively 

F~,s_~=cl(uj_l-u¢)  (3) 

F ~ , ~ _ l - = c 2 ( u j - l - u j )  + c 2 R ( ~ - 1 " 1 -  ~j)  • (4) 

From (1)-(4) the equation of motion for the transla- 
tional vibration of the j t h  molecule: 

M//j = (cl + c2) (UJ+I Jr  UJ -1  - -  2UJ)  - -  c 2R  (($s+1 - (5j-1),  (5) 

where the right-hand side is the instantaneous trans- 
verse component of the total  force acting on the j t h  
molecule. The angular displacements in the equation 
indicate tha t  non-central forces can generate transla- 
tional vibrations even if the translational displace- 
ments are zero (see Fig. 4). 

L 1 
Fig. 4. Non-centra l  forces arising f rom the  angu la r  displace- 

men t s  of the  neighbours  can generate  t ransverse  t ransla-  
t ional  v ibra t ions  even if the  t rans la t iona l  d isplacements  of 
the neighbours  are zero. 

To derive the equation of motion for the rotational 
vibration of the j t h  molecule we calculate the total  
instantaneous moment of the non-central forces acting 
on it. The instantaneous moment of the transverse 
component of 2'1;cs+1 can be approximated by 

Qs ~, j+l  '~" R .  F~,"~+I = c 2 R ( u j + l  - u , )  - c e R  2 ( (3~+1-4- 5j )  • (6) 

Similarly the instantaneous moment of the transverse 
component of Fji,~j_I is 

QI n, j -1  " - R .  F~,,j_I - -  c 2 R ( u j  - -  u j - 1 )  - -  c 2R  2 ( (~J-1 -t- (~J). (7) 

The sum of equations (6) and (7) does not give the 
total  moment responsible for the rotational vibrations 
of the molecules. Indeed, for the arrangement shown 
in Fig. 5, where 

u~-~ = uj = uj+l = 0 and (~J-1  ~-  ~ ] + 1  = - -  (~J 

equations (6) and (7) both yield zero suggesting tha t  
the anti-phase rotational vibration (associated with 
k = ml/a) has zero frequency. However this is at  variance 
with the experimental evidence of both the thermal 
diffuse scattering of X-rays by molecular crystals 
(Sgndor & Wooster, 1961) and the Raman spec- 
troscopy (see e.g. Kastler & Rousset, 1941). 

The moment giving rise to anti-phase rotational 
vibration in Fig. 5 cannot be at t r ibuted to the 
horizontal components of the non-central  forces, 
because the horizontal displacements of the atoms in 
Fig. 5 are second-order small quantities in ~. To 
account for the anti-phase rotational vibration we 
introduce an additional moment of the type 
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Fig. 5. The arrangement in which translational displacements 
are zero and neighbours have equal but opposite angular 
displacements gives rise to anti-phase rotational vibrations. 

- -  c a 6 j  

acting on the j t h  molecule in Fig. 5, where c3 is a new 
constant.  The introduct ion of a new constant  can 
however be avoided by  assuming tha t  the moment  
responsible for the ant i-phase rotat ional  v ibrat ion is 
of the same order of magni tude  as the moment  
responsible for the in-phase rotat ional  vibrat ions 
associated with /C=0 (see Fig. 6). This assumption is 

Fig. 6. Non-central forces can generate rotational vibrations 
about an axis perpendicular to the chain direction even 
if the angular displacements of the neighbours are the 
same and the translational displacements are zero. (In-phase 
rotational vibration associated with infinite wavelength.) 

supported by  the near  equal i ty  of the fundamenta l  
frequencies of the  in-phase and ant iphase  rotat ional  
R a m a n  lines observed in molecular crystals (see e.g. 
Kast ler  & Rousset, 1941). The addi t ional  moment  
responsible for the ant i-phase rotat ional  v ibrat ion can 
then  be convenient ly given the form 

Q~. "~ - 2c2R2(~ . (8) 

From equations (6)-(8) the equat ion of motion for 
the rotat ional  v ibrat ion of the j t h  molecule 

I~'~ = c2R(u3+l - u¢- l )  - c2R 2 ((~-, 1 + 5j- 1 + 4 ($j) , (9) 

where the r ight -hand side is the total  ins tantaneous  
moment  acting on the j t h  molecule. 

We t ry  to solve equations (5) and (9) by  two 
travell ing plane waves 

us = u. exp i ( w t -  k ja)  (10) 
and 

~ =  (~. exp i ( w t - k j a ) .  (11) 

The first wave represents t ransverse translat ional ,  
the  second rotat ional  vibrations,  u and ~t are respective 
ampli tudes,  w = 2 a v  is the angular  frequency, j a  is 
the  position vector of the j t h  molecule in equi l ibr ium 
and k = 2 ~ / 2  is the wave vector. Since both the 

wave vector and  the position vector can have only 
two directions, their  vector character can be indicated 
by  a sign. Subst i tut ing the solutions (10) and  (11) in 
equations (5) and (9) we get after rear rangement  

[Moge- 4(cl + c,) sin e ½/ca]u + (2ic2R sin/ca) 5 = 0 
( - 2 ic2R sin k a ) u  + [Io~ 2 - 4c.zR 2 (cos ~- ½ka + ½)] (~ ---- 0 . 

(12) 
These two simultaneous homogeneous equations for 
the ampli tudes  u and 6 are compatible only if the 
de te rminant  of their  coefficients vanishes i.e. if 

!Mw 9 - 4 ( c l  + ce) sin ~ ½ka 2 i c ~  sin/ca i 

i _ 2 ic2R sin ka  Io9 2 - 4ceR e (cos ~ ½/ca + ½) I = 0 

(13) 
This de te rminanta l  equation, known as the secular 

equation, is a quadrat ic  equat ion in o92. Since it  is 
the characteristic equat ion of a Hermi t i an  mat r ix  it 
yields two real roots of oge for every value of the 
wave vector k. This means  tha t  the dispersion curve 
(o versus k of our monomolecular  chain with two 
degrees of freedom has two branches,  one corre- 
sponding to the positive sign of the square root 
( 'plus'  branch),  the other to the negat ive sign ( 'minus '  
branch). 

D i s p e r s i o n  curves  f o r  t ransverse  v ibra t ions  

Before deriving the general solution of the secular 
equation, first we determine the two fundamenta l  
frequencies corresponding to infinite wavelength,  i.e. 
to k = O .  For this part icular  wave vector equation (13) 
yields the following solutions 

w e _ = 0  (14) 

for the 'minus '  branch and 

w ~  = 6c2R2/I  (15) 

for the 'plus'  branch.  
F rom the mathemat ica l  expression of (15) i t  is 

obvious tha t  o9 represents pure rotat ional  vibrat ion.  
Since this frequency can be observed in the low- 
frequency R a m a n  spectra, i t  is convenient to express 
all solutions of the secular equation in terms of this  
fundamenta l  f requency which will be called o9~. 

Fur thermore,  to s implify the calculation of the 
dispersion curve we introduce two new dimensionless 
parameters ,  a and fl, related to the five parameters  
of the problem by  the following equations:  

¢¢ = 0 /c2  (16) 
and 

f l = I / M R  2 • (17) 

fl can be considered as a molecular form factor. 
For our ring shaped molecules f l =  1. 

Subst i tut ing the fundamenta l  frequency ogf and 
the two new parameters  c~ and fl in (13), the secular 
equat ion takes the form 
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mg'- -~ (~+l ) f l (o~s in*  ½ka (i/3R)w'~ sin ka 
- (iflR/3)o~ sin ka w * -  ~ 9. (cos~ ½ka+½) = 0  , ~¢-,01 

( i s )  
yielding the two real roots 

o92= (o~/3){(o¢ + 1 )fl sin 9. ½ka + (cos 9. ½ka + ½) 
+. { [ ( ~x + 1 ) fl sin 9 ½ ka - (cos u ½ ka + ½ ) ]9. + ,8 sin e ka } ½ }. 

(19) 

From equation (19) the fol lowing conclusions can be 
dr&wI1: 

(i) Both  roots are even periodic functions of the 
wave  vector with the period 2~/a,  known as the  first 
Bril louin zone. The fundamenta l  range of the wave  
vector can be convenient ly  taken as 

--xe/a <_ k <_ 7e/a. (20) 
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Figs .  7 -9 .  Dispersion curves  for transverse vibrat ions  of a linear chain of identical  r ing-shaped molecules  for different values  
of the  parameters  a and/~.  Some  of the very  s teeply  rising branches have  not  been p lot ted  in the entire (0--re~a) range. 
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Since ~o(k) is an even function, it is enough to study 
the dispersion curve from say k = 0  to k=  ~/a. 

(ii) Since the secular equation has been derived 
for an infinite chain, k can take any value, so that  
there are infinite solutions within the fundamental 
range. However, the results can be easily extended 
to finite chains by introducing the cyclic boundary 
conditions of Born (1923). For a chain consisting of 
N molecules these boundary conditions restrict the 
wave vector to the following values 

k=(2/Na)j ,  w h e r e j = _ l ,  __+2, ___3, . . . ,  +½N. (21) 

In macroscopic chains N is so great that  the possible 
wave vectors constitute a quasi-continuum. 

(iii) Since in general both roots depend on the masses 
as well on the moments of inertia of the molecules, 
the general normal modes of the chain represent 
mixed vibrations, i.e. superpositions of translational 
and rotational vibrations of the same frequency. 
However, for particular values of the wave vector the 
vibration may be purely translational or purely 
rotational. This is so for example with k = 0  (see 
equations (14)-(15)). The only other case is k=~/a ,  
for which the secular equation yields the following 
two roots 

a ~ = § ( a  + l)flog~=4(cl +c2)/M (22) 
alia 

o~ = eo~/3 = 2c~.R2/1, (23) 

co+ corresponds to a purely translational vibration 
while w- to a purely rotational vibration. 

(iv) If the frequencies are expressed in terms of w/, 
three out of the four limiting frequencies of the 
(o-~r/a) range (see equations (14), (15) and (23)) are 
fixed, only the fourth (see equation (22)) depends on 

and ft. Since this fourth frequency can take any 
positive value, the 'plus' branch of the dispersion 
curve is not necessarily an 'upper' branch in the entire 
fundamental range, but for appropriate values of the 
parameters it may intersect the 'minus' branch near 
the end of the fundamental range. From equations 
(22) and (23) the condition for this intersection is 

2(a + 1)fl < 1 . (24) 

For small absolute values of k the 'plus' branch is 
always an 'upper' branch, since the 'minus' branch 
starts from zero at k = 0 while the 'plus' branch starts 
from a positive o~ value. 

Further details of the dispersion curves can be 
derived from Figs. 7-9 which show nine dispersion 
curves calculated for the following values of the 
parameters 

x=0.1 ,  1.0, 10.0 and fl=0.5, 1.0, 2.0. (25) 

The common feature of all these dispersion curves 
can be summarized as follows. The 'plus' branch has 
always two stationary values, one at k = 0  and one 
at k=~/a.  The 'minus' branch has always one sta- 

tionary value at k=  ~/a, and for larger values of a 
it has an additional stationary value lying inside the 
range (0, ~r/a). The markedly horizontal trend of the 
'plus' branch near k = 0 accounts well for the sharpness 
of the low-frequency rotational Raman lines of 
molecular crystals, and the stationary values of both 
branches at k = ~/a are in agreement with the observed 
intensity distribution of the extended thermal diffuse 
scattering of X-rays by molecular crystals (S£ndor & 
Wooster, 1961). 

The character of the normal modes for transverse vibra- 
tions 
The character of the mixed normal modes can be 

best studied by comparing the amplitudes of the 
translational and rotational vibrations associated with 
the same frequency in various parts of the fundamental 
range. The ratio of these amplitudes can be determined 
from the two homogeneous equations (12) by sub- 
stituting in them the roots of the secular equation (19). 
In order to get a dimensionless ratio, it is convenient 
to calculate the ratio u/R(~ instead of u/(5. From the 
first equation of (19) we get 

u/(RS) = - 2ic9 sin ka/[Mw ~ -  4(cl + c9) sin 2 ½ka] . (26) 

By substituting a, fl and o~s this can be transformed 
into 

u/(RS)=ifl  sin ka/[2(~ + 1)fl sin 2 ½ka--(3092/o~]. (27) 

From equation (27) we may draw the following 
conclusions: 

(i) For general values of k the amplitude ratio is 
different from zero which again demonstrates that  the 
general normal modes of our monomolecular chain 
are mixed vibrations, the superpositions of transla- 
tional and rotational vibrations having the same 
frequency. 

(ii) The amplitude ratio is always imaginary. This 
means that  there is a constant ~r/2 phase difference 
between the translational and rotational vibrations 
associated with any particular normal mode. 

Further details can be derived from Figs. 10-12 
which show the variation of the amplitude ratios along 
the nine dispersion curves plotted in Figs. 7-9. The 
main characteristics of these amplitude-ratio curves 
can be summarized as follows. In the two branches 
of the dispersion curve the amplitude ratios are of 
opposite sign, indicating that  in the 'minus' branch 
the translational vibration is ahead of the rotational 
vibration by ~/2, while in the 'plus' branch it is the 
other way round. 

All amplitude-ratio curves show a continuous change 
in the character of the normal mode along the funda- 
mental range. At k = 0  the vibration in the 'plus' 
branch is purely rotational, that  in the 'minus' branch 
purely translational. As k increases, the contribution 
of the rotational vibration in the 'minus' branch 
continuously decreases until at k=  ze/a the relations 
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Figs. 10-12. The amplitude ratio curves corresponding to the dispersion curves plotted in Figs. 7-9. 

are reversed. Here the vibration in the 'plus' branch 
is purely translational, while in the 'minus' branch 
purely rotational. The increase of either parameter 

and /~ lengthens those ranges in which one type of 
vibration is predominant. 

Secular equation and dispersion curves for longitudinal 
vibrations 
Since a general translational displacement of a 

dicu]ar components, two transverse and one longitu- 
dinal relative to the chain axes, the results obtained 
in the previous paragraphs should be complemented 
by considering also the case of longitudinal transla- 
lational displacements. If again we restrict the problem 
to two degrees of freedom, allowing translational dis- 
placements along the chain direction (longitudinal 
displacements) and angular displacements about an 
axis perpendicular to the equilibrium plane of the 

molecule can always be resolved into three perpen- molecules we find that  (i) longitudinal displacement 



470 L A T T I C E  V I B R A T I O N S  OF M O L E C U L A R  CHAINS 

can generate only translational vibrations, (ii) angular 
displacements can generate only rotational vibrations, 
i.e. we find tha t  the two types of vibrations are 
uncoupled. The first statement is demonstrated in 
Fig. 13 which show tha t  unequal longitudinal dis- 

Fig. 13. Unequa l  longi tudinal  d isplacements  of the  neighbours  
cazl no t  genera te  ro ta t ional  vibrat ions  about  an axis per- 
pendicular  to the  chain direction. 

placements of the two neighbours alone cannot gener- 
ate rotational vibrations. With regard to the second 
statement we may note tha t  in Fig. 4 the motion 
generated by the angular displacements is purely 
transverse. Correspondingly in the present case the 
two equations of motion of the j t h  molecule take the 
form: 

Mii j  = (cl +ca) (uj+ t + u j - 1 -  2uj) (28) 

I ~ j  = - c 2 R 2 ( ~ j + I - t  - ~ j - l - b4 (~ j )  • (29) 

These two independent equations can be satisfied by 
two travelling plane waves. For the possible frequen- 
cies we get the following expressions 

wt ~ = (4(cl + c~)/M) sin ~ ½ka (30) 

w~= (4c~R~/I) (cos ~ ½ka + ½). (31) 

The first expression represents purely translational 
(longitudinal) the second purely rotational vibrations. 
The translational branch of the dispersion curve is a 
sine curve (see Fig. 14) while the rotational branch 

Tc 

n__ n_ k 
2o a 

Fig. 14. Dispersion curves for longi tudinal  v ibra t ions  of a 
l inear chain of identical  r ing-shaped molecules. 

is of similar shape as the dotted 'plus' branch in Fig. 7. 

B. Latt ice  v ibra t ions  of a d i m o l e c u l a r  chain  

The results obtained for the monomolecular chain can 
be extended to the dimolecular chain i.e. to a linear 
chain having two different (or at  least differently 
orientated) molecules in the unit cell. We take again 
close-packed ring-shaped molecules, but  tlfis time two 
different types (see Fig. 15). The parameters (M, I 
and R) of the two types of molecules will be distin- 
guished by the indices 1 and 2. Furthermore the 
molecules themselves will be numbered in such a way 
tha t  odd indices ( 2 j - l ,  2 j + l  etc.) correspond to 
type-1 molecules, and even indices ( 2 j -  2, 2j, 2j + 2 
etc.) to type-2 molecules. Again we restrict the 
problem to two degrees of freedom" a transverse 
translational vibration in the equilibrium plane of the 
molecules and a rotational vibration around an axis 
perpendicular to this plane. Only vibrations of small 
amplitude will be admitted. 

RI+R2 
2 a/2 

r R1 =; ~ R F  
21 

2j - 1 2 j  2j  + 1 

Fig. 15. In s t an taneous  positions of three  neighbom's in a 
v ibra t ing  l inear ehain eonsisting of two types  of r ing-shaped 
molecules. 

From the mathematical point of view the problem 
of the dimolecular chain differs in two respects from 
tha t  of the monomolecular chain. First, separate 
equations of motion have to be derived for the two 
types of molecules, which increases the number of the 
equations of motion from two to four. Second, the 
horizontal distances between the centres of the nearest 
atoms of neighbouring molecules in equilibrium 

R~, = (R1 + R9.)/2 (32) 

are not equal to the distances of these atomic centres 
from the centres of their parent  molecules (R1 and Re 
respectively). 

Accordingly, using ~imilar argument~ to tho~e for 
a monomolecular chain, the moment acting on the 
(2j+ 1)th type-1 molecule in the anti-phase angular 
displacement of the neighbours (similar to the one 
shown in Fig. 5 for a monomolecular chain) may be 
conveniently given the form 

Q2h/+l = - c2R1 (R1 + R~) (~2i+1 • (33) 

A similar expression may be used for the moment 
acting on the type-2 molecules in the same arrange- 
ment. 
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Using the above assumptions the two equations of 
motion of the (2j+ 1)th molecule can be written: 

M~//~j+~ = (c~ + c2) (u2~+~ + u2~- 2u~j+l) 
-ceR2((~2¢+2- 5~) (34) 

I~ ~+~ = c~R~ (u~+~- u~) 

- c2R~[R2 (32~'+~ + ~ )  + (3R~ + R~) ~2~+~] (35) 

and similarly those of the 2j ' th type-2 molecule: 

M~//2~ = (cl + c2) (u~s+~ + u2~-~ - 2u~) 
-c2R~(5~+~- ~ - ~ )  (36) 

I2~'21 = (c2R2 (u2~+l - u2~-l)  

- -  c 2 R e  [ R I  ((~2~+~ + (~2¢-1) + (3R~ + R~) ~2~] • (37) 

We t ry  to solve these four equations by the four 
travelling plane waves 

u2i+~ = u~. exp i [opt- (2j + 1)½ka] (38) 

(~2~+1 = ~ . e x p  i [cot -  (2j+ 1)½ka] (39) 

u~ = us. exp i [ w t -  2j½ka] (40) 

6~ = &.exp i [wt -2 j½ka]  . (41) 

The first wave corresponds to transverse translational, 
the second to rotational vibrations, both waves 
propagating through type-1 molecules only. Similarly 
the third and fourth waves propagate only through 
type-2 molecules, and they are also of transverse 
translational and rotational character respectively. 
Substituting these four waves in equations (34)-(37) 
we get after rearranging and simplifying : (see equation 
(42)). These four homogeneous equations are only 
compatible if the determinant of the coefficients 
vanishes, i.e. if (see equation (43)). This fourth-order 
equation in 0) 8 is the secular equation of the di- 
molecular chain. Since it is the characteristic equation 
of a Hermitian matrix, its four roots are real for all 
values of k so that  the dispersion curve of the di- 
molecular chain has four real branches. 

which can be factorized into the product of two second 
order determinants 

I M~o9~-2(0+c2) 2(c1+c~) [ 
2(cx + cz) M~c0 ~ -  2(c~ + c2) 

I I~o~-c2RI(3R~+R2) -2c~.R~R~ :, 
X - 2c2R~Re Ieo~e-c2R~.(3R2+ R~) = 0 I 

(45) 
each yielding a quadratic equation in 09% 

Since the first factor in equation (45) contains only 
the masses of the molecules, its two roots are associated 
with purely translational vibrations. These two roots 
yield the two fundamental frequencies 

and 
w~0=0  (46) 

a)~o=2(o+cu)(M~+Mu)/(M~M~) . (47) 

The fundamental frequency WlO corresponds to a 
translational motion in which all molecules in the 
chain move in phase. Since this is equivalent to the 
translation of the whole chain there is no restoring 
force, so that  the frequency has to be zero. On the 
other hand the fundamental frequency 0~20 corre- 
sponds to a translational motion in which the two 
molecules in the unit cell vibrate in antiphase though 
each one is still in phase with all molecules of the 
same type. This can be shown by substituting k = 0  
and 0~20 in the first equation of (42). From this 
equation we get the following amplitude ratio for the 
translational vibrations of the two molecules: 

ul/u2 = --M2/M1 . (48) 

The negative sign indicates the translational vibrations 
of the two molecules in the unit cell are in antiphase. 

On the other hand, since the second factor in equa- 
tion (45) contains only the moments of inertia of the 

[Mlwe-2(c l+c~)]ul  + [2(0+c2) cos ½ka]u2 + + [2ic2R2 sin ½ka](52 = 0 I 
[2(0+c2) cos ½ka]ul + [M2w2-2(cl+c2)]u2 -4- [2ic2R1 sin ½ka](~l = 0 

- [2ic2R1 sin ½ka]u2 + [Ila)~-cpRl(3Rl+R~)](51 - [2ceR1R2 cos ½ka]62 = 0 
-[2iceR2 sin ½ka]Ul - [2c2R1R2 cos ½ka](~l + [I2w2-c2R2(3R2+ R1)]6~ = 0 

(42) 
[Mlw ~ -  2(cl + c2)] 2(cl + c2) cos ½ka 0 2ic~R2 sin ½ka 
[2(0 + c9) cos ½ka] [M2co 2 -  2(0 + c2)]  2ic2R1 sin ½ka 0 = 0 (43) 

0 -2ic2R1 sin ½ka [Ilope-c2Rl(3Rl+R2)] -2c2R1R2 cos ½ka 
- -  2ic~R9 sin ½ka 0 - 2c2R1R2 cos ½ka [Ipw 2 -  c2Rp(3R~ + R1)] 

First we determine the four fundamental frequencies 
of the chain by solving the secular equation for k = 0. 
In this particular case equation (43) reduces to 

two molecules, its two roots are associated with purely 
rotational vibrations. These two roots yield the fun- 
damental frequencies 

21/1 ¢o ~' - 2(cl + c2) 2(0 + c2) 0 0 
2(cl + c2) M2w ~ - 2(cl + c2) 0 0 

0 0 Ila) 2 - c2Rl(3R1 + R2) - 2c2R1R2 
0 0 - 2c2R1R~ I2o~2 - c2R2(3R2 + R1) 

= 0 (44) 
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16R~R'~l'~ (49) ([Rl(3Rl+R2) R,(3R~+R1) r ~ ~ ~ 
+\L Y~ T~ ; +  ~-~ / j '  

The fundamental frequency 0)~0 associated with the 
positive sign in front of the square root corresponds to 
the in-phase rotational vibrations, while the fundamen- 
tal frequency 0)~0 associated with the negative sign 
corresponds to the antiphase rotational vibrations of 
the two molecules in the unit cell. This can again be 
checked by substituting k = 0 and the two frequencies 
o)~0 and 0)a0 in either the third or the fourth equation 
of (42). 

By putting MI=M2,  I1=I2 and RI=Re in the 
expressions of the four fundamental frequencies of the 
dimolecular chain we find that  the two in-phase 
fundamental frequencies of the dimolecular chain 
0)10 and 0)~0 reduce to the two fundamental frequencies 
of the monomolecular chain associated with /c=0 
(see equations (14) and (15)), while the two anti-phase 
fundamental frequencies of the dimolecular chain 
w20 and 0)a0 reduce to the two limiting frequencies 
of the monomolecular chain corresponding to lc = ~/a 
(see equations (22) and (23)). 

l~ow we solve the secular equation of the di- 
molecular chain (equation (43)) for k=~/a.  In this 
case the secular equation reduces to 

Since both 0)1 and 0)3 depend on M1 as well as on I3, 
both frequencies are associated with mixed normal 
modes in which transverse translational vibrations of 
the type-1 molecules are coupled with rotational 
vibrations of the type-2 molecules. Substituting o~1 
and 0)3 in the first equation of (42) we find that  the 
amplitude ratio is positive imaginary for the one 
frequency and negative imaginary for the other, 
indicating that  in the one mixed normal mode the 
rotational vibration is ahead of the transverse trans- 
lational vibration by ~z]2 while in the other normal 
mode it is the other way round. 

Similarly the second determinant in equation (51) 
yields a quadratic equation with the roots 

-+ ([ ¢21  2R1 (3RlI1 + o ~½ 16c.~ R~  
+ .~/-/~-/}. (5.~) 

Again we find that  both frequencies 0)a and co4 are 
associated with mixed normal modes similar to those 
associated with the frequencies o~1 and o~. (see equa- 
tion (52)) only the r61es of the two molecules are 
reversed. For 0)s and wa rotational vibrations of the 
type-1 molecules are coupled with translational vibra- 
tions of the type-2 molecules, the phase differences 

Ml0) ~ -  2(cl + c2) 0 0 2ic2R2 
0 M20) ~ -  2(cl + c2) 2ic~1 0 
0 - 2icsR1 I10) 2 _ c2R1 (3R1 + R2) 0 

- 2ic~R2 0 0 120) 2 -  c2R2(3R~ + .R1) 

= 0 (50) 

which can be factorized into the product of two 
second-order determinants: 

Ml0) ~ - 2(0 + c2) 2ic2R2 
- 2ic~R2 I20) 2 -  c2R2(3R2 + R1) 

M20) 2 -  2(cl + c9 ) 2ic9R1 
- 2ic2R1 I10)~ - c2Rl(3R1 + R2) - 0  

(51) 
each yielding a quadratic equation in o92. The two 
roots of the first quadratic equation are 

eo~°~}, --5[1 ~2(Cl~l~+C~) + c2R2(3R~÷I3 R1) 

([2(0+c2) c2R2(3R:+R1)l'2 16c~R~1½ ~ 
+ \L M~ ~. _1 + -~-~J~ ] J" (52) 

between the two types of vibrations being + g/2 
respectively. 

The characteristics of the normal modes associated 
with general values of k within the range (0, n/a) can 
be derived from the mathematical form of the ampli- 
tude ratios without solving explicitly the secular 
equation for intermediate /c values. Since out of the 
four equations in (42) only three are linearly in- 
dependent, one of the four amplitudes, say 01, can 
be chosen arbitrarily, and the other three amplitudes 
can be expressed in terms of this arbitrarily chosen 
~1 amplitude and of the molecular parameters. Thus 
we get from the first three equations of (42) by 
Crumcr'8 rule 

0 
[ -  2icsR1 sin ½ka] (~1 

- [I10)3 _ c2R1 ( 3 R 1 R 2 )  ] (~1 

2(c1+c2) cos ½]ca 
M20) 2 -  2(cl + c2) 
-2ic2R1 sin ½ka 

M10) 3 - 2(0 + c2) 
2(o+c2) cos ½ka 

0 

2(cl + c2) cos ½ka 
M20) ~ - 2(cl + c2) 
- - 2 i c 2 R 1  sin ½/ca 

2ic2R2 sin ½ka 
0 

- 2 c ~ 1 R 2  cos ½ka 

2ic2R2 sin ½ka 
0 

- 2 c ~ . R 1 R 2  cos ½/ca 

(54) 
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We can show without actually expanding this 
determinant that the ratio ul/R1dl is finite imaginary 
everywhere in the (0, 7e/a) range, except at ]c=0 
where it might be zero or infinite. Accordingly in the 
general normal modes the type-1 molecules carry out 
both translational and rotational vibrations with a 
constant ± g/2 phase difference. Similar result can be 
derived for the amplitude ratio u2/R2(~2. On the other 
hand we find that the amplitude ratios ul/u2 and 
~I/~2 are positive or negative real numbers for any 
value of the wave vector. Thus the translational 
vibrations of the two molecules in the unit cell are 
either in-phase or anti-phase and so are their rota- 
tional vibrations. 

To sum up, the general normal modes of our di- 
molecular chain are mixed modes, in which the vibra- 
tion of both types of molecules has translational as 
well as rotational components. The phase relationships 
between the two types of vibrations of the same 
molecule as well as between similar vibrations of 
neighbouring molecules are fixed, and they remain 
unchanged in the entire (0, 71/a) range. On the other 
hand the contribution of the translational and rota- 
tional vibrations to the normal modes changes con- 
tinuously along each branch of the dispersion curve. 
The characteristics of the particular normal modes 
associated with k=0 and ]c--7~/a have already been 
dealt with when calculating the corresponding fre- 
quencies. 

D i s c u s s i o n  

Though the characteristics of the normal modes of 
monomolecular and dimolecular chains have been 
derived only for the particular model of ring-shaped 
molecules the results can be extended to centro- 
symmetrical molecules of more general shape. In fact 
when the molecular form factor fl was given values 
different from unity we tacitly allowed already for 
departures from the ring-shape. 

With regard to the forces, the assumption of only 
next-neighbour interaction is probably correct in view 
of the rapid decline of the intermolecular forces with 
distance. But the assumption of harmonic restoring 
forces is a rather coarse approximation. Nevertheless, 
it is expected that  the introduction of a more complex 
force pattern will not basically alter the mixed char- 
acter of the general normal modes. 

In setting up equations of motion for our linear 
molecular chains three independent force and torque 
constants (cl, c~ and ca) were introduced, though in 
the actual calculations we used only two of them 
(cl and c2) attributing to ca a fixed value based on 
analogy arguments. However, the use of only two 
independent constants can be justified in a more 
rigorous way. I t  can be shown that  we can ignore the 
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central force, i.e. take cl =0, without affecting either 
the general shape of the dispersion curves and ampli- 
tude ratios in Figs. 7-12, or the continuous change 
in the character of the mixed normal modes along the 
fundamental range and the rules governing their phase 
relationships. Nor will our results will be fundamen- 
tally altered by taking ca as an independent parameter 
instead of a fixed value. This means that  an alternative 
approach to the problem would be to assume only 
non-central forces acting between the nearest atoms 
ofneighbouring molecules and torque giving rise to the 
anti-phase rotational vibrations. This assumption 
would involve only two independent constants (cor- 
responding to our c2 and ca) and would yield similar 
results to those derived above. 

Finally it is expected that  the results obtained for 
linear molecular chains will have relevance to the 
vibrations of three-dimensional molecular crystals 
along particular directions, in the same way that  the 
theoretical dispersion curves calculated for linear 
monatomic lattices (Born & K£rm~n, 1912) can be 
compared with dispersion curves determined ex- 
perimentally from the thermal diffuse scattering of 
monatomic cubic crystals along directions of high 
symmetry (e.g. Walker, 1956). 
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